

脂肪酶(LPS)活性试剂盒说明书

(货号: ADS-W-ZF005 微板法 96 样)

一、产品简介:

脂肪酶(EC 3.1.1.3)是一种特殊的酯键水解酶,能催化天然油脂水解,在食品、医药、洗涤剂和皮革等许多工业领域中都有广泛的应用,

本试剂盒提供一种简单、快速的检测方法,以对硝基苯酚酯作为底物,脂肪酶水解底物产生具有颜色的对硝基苯酚,在405nm波长下测定其吸光值,即可得出脂肪酶活力。

二、试剂盒的组成和配制:

试剂名称	规格	保存要求	备注
提取液	液体 100mL×1 瓶	4℃保存	
试剂一	A 粉体: mg×1 瓶 B 液: 6mL×1 瓶	-20℃保存	临用前甩几下,使微量 A 粉体落到底部, 再向 A 中加入 6mL B 液,混匀备用,用 不完的试剂可-20℃分装保存。
试剂二	液体 15mL×1 瓶	4℃保存	
标准品	粉体 mg×1 支	4℃保存	若重新做 <mark>标曲,则用到该标</mark> 曲。

三、所需的仪器和用品:

酶标仪、96 孔板、研钵、低温离心机、可调式移液枪、冰和蒸馏水。

四、脂肪酶(LPS)活性测定:

建议正式实验前选取 2 个样本做预测定,了解本批样品情况,熟悉实验流程,避免实验样本和试剂 浪费!

1、样本制备:

① 组织样本:

称取约 0.1g 组织 (含水量高的样本可取 0.5g) 加入研钵中,加入 1mL 提取液,在冰上进行匀浆,12000rpm,4℃离心 10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照组织质量(g): 提取液体积(mL)为 1: $5\sim10$ 的比例进行提取。

② 细菌/细胞样本:

先收集细菌或细胞到离心管内,离心后弃上清;取 500 万细菌或细胞加入 1mL 提取液;冰浴超声波破碎细菌或细胞(冰浴,功率 300w,超声 3 秒,间隔 7 秒,总时间 3min);然后 12000rpm,4℃ 离心 10min,取上清置于冰上待测。

【注】:若增加样本量,可按照细菌或细胞数量(10^4 个):提取液(mL)为 $500\sim1000$: 1 的比例进行提取。

③ 液体样本: 直接检测。若浑浊、离心后取上清检测。

2、上机检测:

- ① 酶标仪预热 30 min. 调节波长到 405 nm。
- ② 在 96 孔板中依次加入:

试剂名称 (μL)	测定管
试剂一	40
试剂二	150
样本	10

混匀, 30℃条件下, 立即于 405nm 处读取吸 光值 A1, 10min 后读取 A2, △A=A2-A1。

【注】1. 若 ΔA 值在零附近,可以延长反应时间 T(如至 20 min),或增加样本量 V1(如 $30 \mu L$,则试剂二相

应减少);若 10min 后的 A2 值大于 1.5 或更高可缩短反应时间 T(如减至 5min 或更短);则改变后的反应时间 T 和样本量 V1 需代入公式重新计算。

2. 若样本自身色素较高,导致起始 A1 值大于 1.0,则可减少样本量 V1(如减至 5μ L,则试剂二相应增加),则改变后的样本量 V1 需代入公式重新计算。

五、结果计算:

1、标准曲线方程: y = 0.0325x - 0.0003, x 是标准品摩尔质量 (nmol) , y 是 ΔA 。

2、按照蛋白浓度计算:

酶活定义: 每毫克组织蛋白每分钟释放出 1 nmol 对硝基苯酚的酶量定义为一个酶活力单位。 LPS (nmol/min/mg prot) = [(ΔA +0.0003)÷0.0325]÷ ($C \text{pr} \times V1$) ÷T=307.7×(ΔA +0.0003)÷C pr 3、按照样本质量计算:

酶活定义: 每克组织每分钟释放出 1nmol 对硝基苯酚的酶量定义为一个酶活力单位。 LPS (nmol/min/g 鲜重) = [(ΔA +0.0003)÷0.0325]÷ (W×V1÷V) ÷T=307.7×(ΔA +0.0003)÷W 4、按照细菌/细胞数量计算:

酶活定义:每 10^4 个细胞每分钟释放出 1nmol 对硝基苯酚的酶量定义为一个酶活力单位。 LPS (nmol/min/ 10^4 cell) = [(Δ A+0.0003)÷0.0325]÷ (500×V1÷V) ÷T=0.615×(Δ A+0.0003) 5、按照液体样本计算:

酶活定义: 每毫升液体每分钟<mark>释放出 1nmol 对</mark>硝基苯酚的酶量定义为一个酶活力单位。 LPS (nmol/min/mL) = [($\Delta A+0.0003$)÷0.0325]÷V1÷T=307.7×($\Delta A+0.0003$)

V---加入提取液体积. 1mL; V1---加入样本体积. 0.01mL;

T---反应时间, 10 min。 500---细菌/细胞数量; W---样本质量, g;

Cpr---上清液蛋白质浓度,mg/mL,建议使用本公司 BCA 蛋白质含量测定试剂盒;

附:标准曲线制作过程:

- 1 制备标准品母液 (20μmol/mL) : 向标准品 EP 管里面加入 1ml 蒸馏水。
- 2 把母液稀释成以下浓度梯度的标准品: $0, 0.4, 0.8, 1.2, 1.6, 2\mu mol/mL$ 。也可根据实际样本来调整标准品浓度。
- 3 在 96 孔板中加入: 10μL 标准品+40μL 的 B 液+150μL 试剂二, 混匀, 于 405nm 下读取吸光值, 根据结果制作标准曲线。